煤电的低碳化发展路径研究

来源:微信公众号“循环流化床发电” 作者:王月明 关键词: 三改联动 煤电 节能降碳 灵活性改造 碳捕集        收藏 0   

2022
07/08
15:54
微信公众号“循环流化床发电”
分享
投稿

我要投稿

2.3 煤电机组灵活性技术

为了解决新能源消纳的问题,煤电运行需要更加灵活,调峰能力更加突出可靠。煤电机组调峰技术需要重点研究或突破的地方主要包括2方面:一是调峰的深度,二是调峰的速度。火电正由传统的提供电力、电量的主体电源,逐步转变为提供电力、电量的同时,向电力系统提供可靠容量、调峰调频等辅助服务的基础性、调节性电源。

随着新能源比例的增加,电网对于瞬间大幅甩负荷的响应能力要大幅提升,迫切需要从技术上提高煤电负荷快速升降的能力。

2.3.1 锅炉深度调峰技术

根据炉型、煤质、燃烧设备的不同,目前国内大部分燃煤锅炉低负荷稳燃能力在40%~50%额定负荷,通过改造下探至20%~30%额定负荷。

锅炉深度调峰主要面临低负荷稳燃和环保达标2个问题。

提高锅炉低负荷稳燃能力的主要技术措施有:锅炉精细化运行调整,基于强化燃烧的锅炉燃烧器改造,锅炉制粉系统改造,掺烧高挥发分煤质改造,以及等离子体、微油、富氧等助燃改造等。

目前,绝大部分煤电机组脱硝装置的工作温度为300~420 ℃。当机组深度调峰时,随着锅炉负荷的降低,脱硝装置入口烟温将降至300 ℃以下。为避免脱硝催化剂失去活性,脱硝装置需要退出运行,导致氮氧化物排放超标,机组调峰中止。因此,针对深度调峰期间,脱硝装置无法投入的机组,需要进行提高脱硝装置入口烟温改造。主要的低负荷选择性催化还原(SCR)脱硝入口烟温提升技术有省煤器烟气旁路、省煤器水侧旁路、省煤器分级布置、回热抽汽补充给水、热水再循环等技术。

上述技术措施都是常规手段,需要针对不同的机组采用不同的组合。

2.3.2 控制系统调峰适应性技术

我国火电机组在50%额定负荷以下普遍以启停机过程控制为主,分散控制系统(DCS)控制逻辑未能在50%额定负荷以下进行连续运行甚至响应调峰调频的调试。

火电机组深度调峰运行负荷范围一般目标为30%~100%额定负荷。这不仅是简单的运行负荷范围变宽,从自动调节和控制角度,汽动给水泵、变频泵、调节阀等大量对象的非线性特性随工况范围的变宽而变得不可忽视。很多控制回路匹配30%~100%额定负荷范围工况变得异常困难,导致机组常常表现在某些工况下自动控制运行的异常,给进一步提高变负荷速率指标给机组的安全稳定运行带来极大的挑战。

机组深度调峰运行时,大量设备接近极限工况运行,辅机跳闸、主燃料跳闸等保护和切除自动等功能回路如有误动或切手动都极易威胁整个系统的安全稳定运行。若要实现更进一步深度调峰,需要针对锅炉燃烧进行控制优化,修改逻辑(图3)。




图3 燃煤锅炉智能协调优化控制

2.3.3 热电解耦技术

1)汽轮机高低旁路热电解耦技术 汽轮机旁路的设计目的在于协调锅炉产汽量与汽轮机耗汽量之间的不平衡,实现一定程度的热电解耦,提高机组对负荷、供热的适应性以及运行灵活性。利用机组已有的旁路或者新建的旁路可以实现对外供热。汽轮机旁路供热系统如图4所示。





图4 汽轮机旁路供热系统

汽轮机高低旁路供热按其供热形式可以分为:

1)低压旁路单独对外供热;

2)高压旁路部分主蒸汽对外供热;

3)汽轮机高低旁路联合供热。

目前应用较多的是低压旁路单独对外供热和汽轮机高低旁路联合供热2种方式。

2)低压缸零出力热电解耦技术 供热机组一般受低压缸冷却蒸汽流量限值和以热定电运行方式的影响,电调峰能力有限,很难适应电网深度调峰需求,供热能力也受限制。低压缸零出力技术是突破这一难题有效手段。图5为低压缸零出力供热技术系统示意。该技术是在低压缸高真空运行条件下,关闭低压缸入口阀门,将原进入低压缸的蒸汽用于供热,实现汽轮机低压缸零出力运行。以某机组为例,经低压缸零出力改造后其低压缸进汽量减少,大量蒸汽用于供热,相应冷源损失减少,供热季平均发电煤耗下降约40 g/(kWh)。低压缸零出力改造技术突破传统供热机组运行理论,实现了机组低压缸零出力运行,从而大幅降低低压缸的冷却蒸汽消耗量,提高汽轮机电调峰能力和供热抽汽能力,并能够实现抽汽凝汽式运行方式与零出力运行方式的在线灵活切换,使机组同时具备高背压机组供热能力大、抽汽凝汽式供热机组运行方式灵活的特点,显著提升运行灵活性。




图5 低压缸零出力供热技术系统


2.3.4 储热耦合调峰技术

目前的火电机组灵活性较差,主要是因为机组的锅炉和汽轮机间具有很强的耦合关系,当需要宽负荷运行时,汽轮机具有较好的负荷调节能力,但锅炉受最低稳燃负荷的限制,不能进一步降低负荷率,限制了机组的调峰能力。为提高火电机组的灵活性,适用于深度调峰,需要采取措施将机组的锅炉和汽轮机进行解耦。

采用储能可以在用电负荷低谷时充电,在用电尖峰时放电,以降低负荷尖峰。利用储能系统的替代效应可以将煤电的容量释放出来,从而提高火电机组的利用率,增加其经济性。

目前,已经可以实现工程应用的是高温熔盐储热耦合火电机组调峰技术,其系统结构如图6所示。

在机组参与电网调峰需要降低出力时,保持锅炉负荷不变,通过抽取部分主蒸汽和再热蒸汽进入储热模块,换热后根据参数匹配返回机组的相应热力系统接口,实现机组出力降低的同时将部分热量存储于储热模块;在机组参与电网调峰需要增加出力时,仍然保持锅炉负荷不变,根据参数匹配从机组的相应热力系统接口抽出部分蒸汽或给水进入储热模块,换热后根据参数与相应的热力系统接口蒸汽或给水混合,返回机组,实现机组出力的升高。

在机组要求低负荷运行时,锅炉燃烧量不变,汽轮机负荷降低,利用储热介质将高品位能量储存,负荷变化不受锅炉最低稳燃负荷影响,增加机组调峰负荷范围和灵活性,可以实现深度调峰的需求,调峰深度降低至18%额定负荷。


图6 高温熔盐储热耦合火电机组调峰技术

在机组要求高负荷运行时,锅炉燃烧量不变,利用储热介质放热提升汽轮机负荷,提高能量利用效率。汽轮机组不做其他改造情况下可实现机组峰值时间段内持续扩容5%。

2.4 煤电机组调峰政策建议

2020年煤电发电量约4.8万亿kWh,占全社会总发电量的65%,年利用小时为4 400 h,负荷率约为50%。若负荷率降至30%,年利用小时将为 2 600 h,年发电量将减少至2.8万亿kWh,可为新能源上网腾出空间,且保持煤电的调峰备用功能。

煤电调峰备用后,整个行业的燃煤量减少约为53 400万t/a,合计减排CO215.3亿t/a。建议用减排量弥补费用缺口,对腾出上网空间的调峰备用煤电机组,进行碳交易补偿。对于在极端情况下,能及时满足电力系统特殊要求的机组,给予特殊的资金奖励,以保证煤电机组调峰备用功能不被荒废,确保整个电力系统的稳定。

 
本文导航:
投稿联系:投稿与新闻线索请联络言过 13601277774(微信同号) 投稿邮箱:heating58@126.com。
反对 0举报 0 收藏 0 打赏 0评论 0
特别声明
本文转载自微信公众号“循环流化床发电”,作者: 王月明。中能登载本文出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考,版权归原作者所有。若有侵权或文中涉及有违公德、触犯法律的内容,请及时联系我们。
凡来源注明中能*网的内容为中能供热网原创,欢迎转载,转载时请注明来源。
 
更多>同类资讯
广告
广告
广告

APP

中能热讯随身的行业商务资讯

中能热讯APP随身热讯

扫码下载安装

公众号

微信公众号

扫码关注

顶部